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Kantorovich-type analysis and a locally g¢-superlinear convergence result for this algorithm are
given.
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1. Introduction.

Consider the nonlinear system of equations
F(x)=0, (1.1)
where F:R" —>R" is continuously differentiable on an open convex set D CR", and
the Jacobian matrix F’(x) is sparse. To solve the system, we use the iteration
X =x—B F), (1.2)
where x is the current iterate, x is the new iterate, and B is an approximation to

F"(x), which has the same sparsity as the Jacobian.

Suppose we have finished the current iteration. Then the information we have
is x, x, F(x), F(x), B. The purpose of this paper is to find a matrix B which is a
good approximation to F’(X) but to economize on the number of function evalua-

tions required for this approximation.

In 1970 Schubert [11] gave a sparse modification of Broyden’s [1] update.
Broyden [2] also gave this algorithm independently. In order to present Schubert’s

algorithm, we introduce the following notation concerning the sparsity pattern of

the Jacobian:

Definition 1.1. For j=1,2,..,n define the subspace Z,CR" determined by the spar-

sity pattern of the jth row of the Jacobian:

Z;={v€R": e[v=0 for all i such that [F’(x)];;=0 for all x€R"},

where e; is the ith column of the nXn identity matrix. Define the set of matrices Z

that preserve the sparsity pattern of the Jacobian:

Z = {ACLR™): ATe€Z; for j=1.2,.,n /.



Definition 1.2. For j=12,...,n, define the projection operator, DJ-EL(R"), that maps
R"™ onto Z;:

Dj = dlag (djl’deJ R ’djn)’
where

1’ ifel‘ E Zj’
dj; = 0, otherwise.

For a scalar a€R, define the pseudo-inverse:

a l ifa =0,
at = .
0, ifa = 0.

Now Schubert’s update is formulated as follows:

B=B+ i([s]f[s]j)+ejef(y — Bs)(s1], (1.3)
Jj=1

where [s], = D;s,s =x —xandy = F(x) — F(x).
The advantage of Schubert’s algorithm is that at each iteration only one func-
tion value is required, and it is g-superlinearly convergent (see Marwil [8]). How-

ever it usually requires more iterations than finite difference algorithms (see Li

[7D.

Curtis, Powell, and Reid [4] proposed a finite difference algorithm, called the
CPR algorithm, which is based on a partition of the columns of the Jacobian. Cole-
man and Moré [3] associate the partition problem with a graph coloring problem
and gave some partitioning algorithms which can make the number of function

evaluations needed to approximate the Jacobian by CPR algorithm optimal or

nearly optimal.

Following Coleman and Moré, we give some definitions concerning a partition

of the columns of the Jacobian.



Definition 1.3. A partition of the columns of a matrix B is a division of the columns

into groups ¢y,c2,...,c, such that each column belongs to one and only one group.

Definition 1.4. A partition of the columns of a matrix B is consistent with the direct
determination of B if whenever b;; is a nonzero element of B, then the group con-

taining column ;j has no other column with a nonzero element in row i.

The CPR algorithm can be formulated as follows: for a given consistent parti-
tion of the columns of the Jacobian, which divides the set {1,..,n} into p subsets
€1,.., ¢p (for convenience, c;, i=1,2,..,p, indicates both the sets of the columns and
the sets of the indices of these columns), obtain vectors d;,ds,..,d, such that B is
determined uniquely by the equations

Bd, = F(x+d;,) — Flx) = y, 1=12,..p . (1.4)
Notice that for the CPR algorithm, the number of function evaluations at each
iteration is p +1. Since the partition of the columns of the Jacobian plays an impor-
tant role in the CPR algorithm, we call the CPR algorithm based on Coleman and

Mor€’s algorithms the CPR-CM algorithm.

The advantage of the CPR algorithm is that it usually requires fewer itera-
tions than Schubert’s algorithm. However, it requires more function values at each

iteration than Schubert’s algorithm (see Li [7]).

In an early paper [7], we proposed an algorithm called the secant/finite
difference (SFD) algorithm, which is also based on a consistent partition of the
columns of the Jacobian. However, it uses the information we already have at

every iterative step more efficiently than the CPR algorithm. Let



d[- = Zsjej , L= 112:-'-:1) s (1.5)

J€c,
g = Xxd;, g§=0, (1.6)
Jj=1
and
Y -_-'F(f—‘gL_l)—F(f—gl), I:=1,2,...,p, (17)

where s, = X, — x; indicate the ith component of s. The SFD algorithm can be for-

mulated as follows: If s; = 0, for some j € c;, then the jth column of B is determined

uniquely by equations
é_di =Ji-
If s; = 0, then the jth column of B is equal to the j th column of B.

Since

y1 = F@& —go)—Flx —g) = Fx) - F(x — g1),

i B _ (18)
Vo = FE—g,.1) —F& —g,) = F& —g,_1) - F0),

the number of function evaluations required by the SFD algorithm at each itera-

tion is one less than that required by CPR-CM algorithm.

Now consider the example

X 0 0 0 0 0 0 O
0 X 0 0 0 0 0O
0 0 X0 0 0 0 O
0 0 0 X0 0 0 O (1.9)
0 0 00 X0 0O
X X X 0 0 x 0 0
X X X 0 0 0 X 0
P( X X 0 0 0 0 X

The partition ¢, = {1}, ¢y ={2},c3={3},¢c,={4,5,6,7} is an optimal consistent
partition of the columns of the Jacobian. For this problem, the CPR-CM algorithm

and the SFD algorithm require 5 and 4 function values at each iteration



respectively.

In this paper, we propose an algorithm called the combined
Schubert/secant/finite difference (CSSFD) algorithm, which is a combination of the
SFD algorithm and Schubert’s algorithm (including Broyden’s algorithm). For some
problems, this algorithm can reduce the number of function values required at each
iteration to fewer than the SFD algorithm by considering special structure of the

Jacobian. For example (1.9), the number of function evaluations is 2.

The CSSFD algorithm and its properties are given in Section 2. A

Kantorovich-type analysis for this algorithm is given in Section 3. A g-superlinear

convergence result is given in Section 4.

In this paper, L(R") denotes the linear space of all real nXn matrices, (Bl

indicates the Frobenius norm of a matrix, and || indicates the [9-vector norm.

2. The CSSFD Algorithm and its Properties.

Consider example (1.9). The first 3 columns of the matrix are denser than the
other columns, and this makes p, the number of the groups in the partition, at
least 4. The CSSFD algorithm divides the columns of the Jacobian into two parts,

and uses different algorithms on each part.

We say a group of the columns of a matrix has ‘good sparsity’ if the columns
in this group have few nonzeros in the same row position. Otherwise, we say the
group of the columns has ‘bad sparsity’.

Suppose the columns of the Jacobian can be divided into two groups -- the
good sparsity group ¢ and the bad sparsity group c,. For convenience, we use ¢ and

¢, to indicate both the groups of the columns of a matrix and the sets of the indices



of these columns. Then,

cUcy = {1,..,n}
For any matrix A € L(R"), let

A]_:A EejejT, A2=A2£’jef

Jj€ey j€e
Then A = A; + A,. The main idea of the CSSFD algorithm is to use Schubert’s
update (including Broyden’s update) on B, and to use the SFD algorithm on By,

where B =Bl +32

In practice, there are many ways to choose ¢ and c;. For example, we can first
partition the columns by using a CPR-CM procedure. Then, if we can afford m F-
values at each iteration, we can keep the columns of the m —1 largest groups of the

partition for ¢ and put all the remaining columns into c;.

Algorithm 2.1. Given a consistent partition of By, which divides ¢ into p —1 subsets
€2,C3,..., Cp, and given an x%€R"™ and a nonsingular matrix B, with the same spar-

sity as the Jacobian, at each step £=0:
(1). Solve B,sf = —F(x").

(2). Choose x**! by x**1 = x* + s¥ or by a global strategy such as a trust-

region method. Let s* = x#*1 — %,
(3). Check for convergence.

(4). Update Bj; by Schubert’s update to get Bj.11, and update B,y by the

SFD algorithm to get B, 19 -

(5). Set

B,+1 = Brs1n + Brvro -



J€e, |
g =>xd, i=1.,p, g =0, (2.2)
J=1
yy=F&x—-g_y)—-Fx-g), i=1,2, - p,
and
1
J; = fF’(x’—gi +t(g, —gi-Ndt, 1=1,2,..,p. (2.3)
0
Then,

Jidi = Yi, 1= 112' o P, (24)
and the update of Algorithm 2.1 can be formulated as

B, =By + 3 (dy)ld11)* eiel(yy — Brdpldy )T,
=1

B—2 = By + i 2 Sj+3j(Ji "B2)ejejT ’ (2:5)
i=2 j€c,

B_=§1+Bz.

{

Now we give some of the properties of B obtained from (2.5).

Lemma 2.1. B satisfies the secant equations

Bdi =Y, 1 = 1,...,p 5 (26)
and (2.6) implies that

Bs = Fx)—Fx) = y. (2.7)

Lemma 2.2. B is the unique solution to

min{|B — Bjp: Bd, =y;, i=1,.,p, and B € Z }. (2.8)



The proof of this lemma is similar to that for Schubert’s algorithm given by Reid

{10] and Marwil (8].

Theorem 2.3. If A € L(R") has the same sparsity as the Jacobian, then

— 1
1By — Ayl = IB1—A4lf - W"(Bl — Aps|?
. ; (2.9)
+ > ([d1]iT[d1],-)+[eiT(y1 —Adl)]2 .
=1
Proof. Let E; = B,—-A,;,and E; = B, — A;. From (2.5), we have
eTB, = e[By + ([d,1F1d,]) el (y, — Bydld, )] . (2.10)

Subtracting el A; from both sides of (2.10), and noticing that efB,d, = elB,ld,);

and that el A d, = eTA,[d,];, we obtain

eTE, = ¢TE, + ([d171d;}) T el (y; — B1dld,]F
= eTE U — (1d,17[d 1) d):[d,1D) (2.11)
+ ([d)T1d 1) el (y, — A1dldy )T

Since ([d171d;))Yel(y;, — A,d,) is a scalar, the first and second terms on the right

of (2.11) are perpendicular to each other, and we have

leTE L2 = eTE( — ([dy)71d 1) [d11ldDI? + (1) Td 1) el (1 - Aqdy)f?

= |eTEI? — ([d1)1d 1) * [T Eld,) |2 + (1) Td1)) el vy — Ardp)l?
1
lls|i?

=< |lefE | - leTE dy|? + (d)Ttd 1) el vy = Ady)?.

Therefore,



— n —
1By — Al = 3 le/EP
i=1
1

"—8"3"(31 —Apdy)?

= |By — Al -

+ 3 (dy)7Id1) el vy — AydpP?
=1
1

“THZ'"(B L — Apsi?

= By — Aulf -

+ 3 ()7 el — ArdyP

i=1

Theorem 2.4. If A € L(R™) has the same sparsity as the Jacobian, then
1
IIs/?

+ $ 3 stsilW — Ael?

i=2 j€c,

1By — Aol = By — Agl} — —5 Bz — A)sl?

(2.12)

Proof. Let E, = By— Ay, and Ey; = By— A, It follows from (2.5) that if
j€ec,i=2,..,p, then

Bae, = Bye, + s;'sj(J; — Bole; . (2.13)
Subtracting Ase; from both sides of (2.13), we obtain

E—zej = (1 - Sj+8j)E29j + sj+sj(°]i - Az)ej .
Since (1 —s;7s;)s/"s; = 0, we have
||E_2€j||2 = (1 —5;"s))|Eq¢;l? + 5,7 s,l(J; — Aje)l?
= ||E2€’j"2 - 3j+3j“E2ej"2 + s sl — A2)€j"2 :

Therefore,

IESlF = 3 IE sl (2.14)
j€c



= EolE — st s Bl + S 3 st sl — Al

J€c =2 je€c,

In addition,

3 stsilEqel® = |Es X st sjeefIE

J J
j€e j€c !
IEy S s,7s eels|?
Je DT Egs)?

s} T IsI?
Thus, (2.12) follows from (2.14).

3. A Kantorovich-type Analysis.

To study the convergence properties of Algorithm 2.1, we assume that F~

satisfies the following Lipschitz condition: For every i € ¢, there exists vy, > 0, such

that

IF x) = F (el = yillx —yi 7/x,y €D, (3.1)

and there exists ©;, >0, i =1,2,.., n, such that

lel(F (x)y = F* 0l < OJx —y|,  Tx,y€D . (3.2)
1

1 1 1
Let y=(Xv??2, 6 =( i 022 a=(y*+©0%2%. If F’ satisfys this Lipschitz con-
i€c i=1

dition, then the following are true:

IW’(x)l _F’(y)luF = e"x _y“ ’ “/xuy €D ’ (33)

IF (x)g = F oy = vlx —yl, 7x,y€D, (3.4)
and

WF ) = F lr = alx =yl Vx,y€D . (3.5)

Lemma 3.1. Let F~ satisfy (3.1) and (3.2), and let B be generated by Algorithm

21.Ifx€D and x — d; CD, then for any z € D,

10



LBy - Fr@)sl?
<1 (3.6)
+ 0T — 2l + S lil?

1By — F @)} < IBy = F )lif -

Proof. Substituting F(z) for A in (2.9), we obtain

1By — F' @l = 1By — F @l — 5By — F(2) sl
. sl 3.7)
+ 3 (d)Id 1) el (v, — F ()d )P .

i=1

By (2.3), (2.4), (3.3), and Cauchy-Schwarz inequality we have

n

2 ([d1]lT[d1],‘)+[€¢T(y1 - F'(Z)dl)]2 = i ([dl]g‘[dlli)-’-(é’?‘(e}l ‘—F’(Z))l[dl]i)2

(=1 i=1
= 3 Wdld, ) el Ty — F @) lld 2 = 3 1ef ey — F @)yl?
i=1 i=1
1
=y = F @)l = If F & -1~ 0dy) — F @) del} (3.8)
0

- 1
< O%(Ix — 2l + S ldu* .

Then (3.6) follows from (3.7) and (3.8).

Lemma 3.2. Let F’ satisfy (3.1) and (3.2), and let B be generated by Algorithm
21 Ifx€éDand{x—g;, i =2,..,p }CD, then for any z € D,
1 . 2
I(By — F(2)9)s]

lst? @9)
+ YA — 2| + Ish? .

1By — F(2)3ff = 1By — (F(2)4lF —

Proof. Substituting F°(z) for A in (2.12), we obtain

11



1

1By — F (2)g% =< |By — F @)} — —5(By — F (@) sl

“3“2 3.10)
+ i 2 SJ'+ SJ"(JI - F'(z))ej||2 .
i=2 jec,
It follows from (2.3) and (3.1) that
$ S sl —Fenelf s $ T~ Fr@e,f
i=2 jecr i=2 jEc,
1
= f‘. SIfE G —g + tlg — g.-1)) — F (2))dt ¢
i=2 j€c, 0
j (3.11)

1
= $ Sv2fUF - 21 + (1 = Ol + el _ohde)?

i=2 jée, 0

= § S — 2 + Is? = v2IF — 2+ IsD? .

i=2 j€e,

Thus, (3.9) follows from (3.10) and (3.11).

Let

de = 2 Ské’j
J€c,

and

i
gtfe = 2 dj‘, i=12,..,p, g§=0.
j=1

We have the following estimate for B ;.

Theorem 3.3. Let F~ satisfy (3.1) and (3.2), and let {x*} and {B,} be generated

by Algorithm 2.1. If &/ }fXd CD and (¥ *' ~ g/, i = 1,2,..,p/tyCD, then

f2 . .
1Brsy — F ¥ Hlr = By — F (xp)lr + 2a D ERRE I (3.12)
(=0

Proof. Substituting z for X in (3.6) and (3.9), we have

12



1B, - F /@1l < 1B, ~ (Ol + ()

and

1By = F ()l = By — F (D)ol + (vls)? .

Therefore

B = F' (@2 = |By — F @} + 1By — F (Dal
< |B — F' @I} + (© + yD)|s|?

=B —F @I + o?s)®.
Then

IB—F @l = IB—F @l + alx — I (3.13)
< B = F (0| + 2alx — x| .
Thus, (3.12) follows (3.13).

From (3.12), we have the following Kantorovich-type theorem for Algorithm

2.1.

Theorem 3.4. Assume that F~ satisfies (3.1) and (3.2). Also assume that xo € D and

By € L(R") satisfy

1By —F O = &, 1Bg!lr = B, IBg'F&OI =7
and
(1-388€2 10 3
If S(x°,2t%) = {x: Jx —x% = 2t"} C D, where

1
= —(1—10h)?
t 5af 1-0@1 )%,

13



then fx*}, generated by Algorithm 2.1 without any global strategy, converges to x,

which is the unique root of F(x) in S(x°,¢) N D, where

0o | =

ap T (1- B’

1 2a8n ]

Proof. Consider the scalar iteration

= 2B i), =0, k=12

t -t = = - 3.14
kR+1 k 9 — Bs ( )
where
5 1-386 n
fit) = ~ at? - t+ - . (3.15)
2 B B
It is easy to show that {t,} satisfies the difference equation
tk+1 - tk - T_%[a(tk - tk'—l) + 2atk_]_ + 6](tk - tk_l) 9 (3.16)
_ 3+ B6 2 : . ccally i
where ¢ = 5 < 3 From (3.16), we see that {¢,} is a monotonically increas-
ing sequence and that
lim¢, = ¢,
where ¢ is the smallest root of (3.15).
Now, by induction, we will prove that
"xk+1 —xk" = thtr — ks k=12, -, (3.17)
fxt} C S ¢", (3.18)
fktl gk =12, ., p}C S(x%2t"), (3.19)
and
By s —L— <38, k=12 - (3.20)

1-9¢

14



For £ = 0, we have

et —x% = =

Thus,

bt — g0 — 2 = et — <O+ hgl) = 2t - 20 = 267

Suppose (3.17) holds for k =0,1,..,m — 1. Then,

m
e — 20 =

2 G =)=ty St
(=0

Therefore, x™ € S—(xo,t*), and

fxm —gm=1l i =1,.,p}CSx%2t").
By Theorem 3.3,

B¢ (B —Bol
= IB5 HIFUIB — F x™lp + IF (™) = F Ol + IF (%) — Bollr)

m=—1 . .
= BBa i+t — x|+ 28) < BBat’ +28) < ﬁgﬂ =¢q.
i=0

Thus, by Theorem 3.1.4 of Dennis and Schnabel (6, p.45],

B = —B— <38,
-9
Therefore,

et = x| B RF ™) = P = By = 2D

< B [ &pem _xmY 4 20
1-¢ 2

m—2 ) .
e+t = x| + 8™ — x|
i=0

T‘iLq’ lalt, — tm-1) + 20t T 6](’tm ~tm—1) = tn1 — tm -

IA

This completes the induction step. By (3.17), it is easy to show that there is an

x" € D such that

15



limx? = x" .

k-

" The uniqueness of x* in S(x°,¢ ) N D can be obtained from Theorem 12.6.4 of [9] by

setting A(x) = B,.

4. Local Convergence properties.

To study the local convergence of our algorithm, we assume that

F:D CR™ —>R" has the following property:

There is an x* € D, such that F(x") = 0 and F*(x") is nonsingular. (4.1)

Theorem 4.1. Let F satisfy (4.1), and let F~ satisfy (3.1) and (3.2). Also, let {x*} be
generated by Algorithm 2.1 without any global strategy. Then, there exist ¢, >0,
such that if xo € D and By, a nonsingular nXn matrix, satisfy

-zl <€, IBe—F (s =3,

then {x*} is well defined and converges g-superlinearly to x.

1

Proof. Notice that when ¢ and & are small enough, we have that h = —1%, B < 3

and that §(x0,2t*)CD, where h, B and ¢t are defined in theorem 3.4. Therefore,

by Theorem 34,

fhtl+ gk i=1,2,.,p}CD.

Thus, substituting x" for z in (3.6) and (3.9), we have

1
s

+ O%(lx — x| + Ish? , 14.2)

By —F (x")3 < By — F &Nl - 1By — F (x")ps|?

16



and

1By — F'(x")gl2 < |By — F (x")gl — “S#wz —F ()l
+ Y(F = < + 2 - 4.3)

Then,

1B —F ()= By — F (x4} + 1By — F (x")all?
< |B — F (x)I} + a®(jx — "] + Is])?

< |B — F (x| + (Baa(x 1))

where o(x,x) = max{ x — x"],|lx — x" ||. Therefore,

IB—F &)F <|IB—-F &)+ 3ac(x,X) .
Thus, by Theorem 5.1 of Dennis and Mor€ [5], {x"} converges at least g-linearly to

*

X .

By Theorem 3.1 of Dennis and Moré [5], to prove g-superlinear convergence,
we need only to prove that
1B, — F " Ns*| _

ke sl

Let E =B —F’(x")and E =B — F"(x"). Then, it follows from (4.2) and (4.3) that

(4.4)

= ,  IEsP 5 45
lElF = QE.lF — s )2 + 3600(x, X), .
and that
= IEsI? &
IEolr = (IElF - WE )2 + 3yolx, X) . (4.6)

From (4.5) and (4.6), using the same argument for proving the g-superlinear con-

vergence property of Broyden’s algorithm (see Dennis and Moré (5]), we obtain

17



By = F(x))is”|
lim ;
ke lIs“1

-0, 4.7)

and

I(Be = F(x )gs”|

- =0. (4.8)
ko s ™1

Notice that

By = F (x"Ns®| = By — F " (x Nys*| + By — F"(x Nas"|l .
Thus, (4.4) follows from (4.7) and (4.8).
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